Software

USING OPENMP* EFFECTIVELY
ONTHETA

Carlos Rosales-Fer
Intel® Developer Products Division

Overview

This talk is not intended to teach basic OpenMP*, but rather focus on new
capabilities and an emphasis on application to the Intel® Xeon Phi x200
processors

» Brief introduction to OpenMP*
= OpenMP* tasking
= Using OpenMP* SIMD instructions
= OpenMP* affinity
= Pure OpenMP*
= Hybrid MPI+OpenMP*

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

What is OpenMP*?

OpenMP* stands for Open Multi-Processing. It provides:

Standardized directive-based multi-language high-level parallelism.

Portable and Scalable model for shared-memory parallel programmers.

Language support for C/C++/FORTRAN.

Provides APIs and environment variables to control the execution of parallel regions.

Latest specs and examples are available at http://www.openmp.org/specifications/.

Supported by LLVM, Visual Studio Compiler, Intel Compiler, GNU GCC and others.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://www.openmp.org/specifications/

OpenMP* Programming Model

Real world applications are a mix of serial and inherently parallel regions.

OpenMP* provides Fork-Join Parallelism as a means to exploit inherent parallelism in an
application within a shared memory architecture.

= Master thread executes in serial mode until a parallel construct is encountered.

= After the parallel region ends team threads synchronize and terminate, but master
continues.

f—

—\ —\
£¢_\ é | —
_// S
S/
Master
Thread \ t -

Parallel Regions

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OpenMP* Constructs

" Parallel - thread creation !$OMP PARALLEL
1$OMP DO
= parallel doi=1, N
a(i) = b(i) + c(i);
Work Sharing - work distribution among threads end do

'SOMP END PARALLEL

= do, for, sections, single
Data Sharing - variable treatment in parallel regions and serial/parallel transitions

» shared, private

Basic Components
A

Synchronization - thread execution coordination #pragma omp parallel
" . . {
. " critical, atomic, barrier #pragma omp for
] . for(int i = 0; i < N; i++)
Advanced Functionality (

= Tasking, SIMD, Affinity, Devices (offload) , a[i] = b[i] + c[i];

Runtime functions and control

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OPENMP™ TASKING CONCEPTS

Some Background

Prior to standard version 3.0, OpenMP* was focused exclusively on Data
Parallelism, distributing work over threads executing the same code.

This work sharing model presented some limitations

= A need for a known loop count

= Very limited ability for dynamic scheduling

* [nconvenient for naturally task-parallel problems (dependencies, nesting)

Task parallelism constructs were introduced to complement the already
existing set that supported data parallelism

Task parallelism is particularly useful in irregular computing

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

What is an OpenMP* Task?

From the standard document: “specific instance of executable code and its data
environment”

= Explicit task: work generated by the task construct
» |Implicit task: threads of a parallel region
In this section of the talk | will be only discussing explicit tasks.

By default tasks are deferrable, so the generating thread may execute it
immediately or queue it

#pragma omp task
myfunc () ;

#pragma omp task
for(int i = 0; i < N; i++){ .. }

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Task Synchronization

Sibling tasks Nested tasks

The taskwait construct can be used to wait ~ Synchronizing siblings and their
for deferred task completion at some point descendants requires a taskgroup

in the code
#pragma omp taskgroup
{
#fpragma omp task
#fpragma omp task myfunc () ;
myfunc () ;
#pragma omp task
#pragma omp task {
for(int i = 0; 1 < N; i++){ .. } for(int i = 0; i < N; i++){
#pragma omp task
#pragma omp taskwait nestedfunc() ;
}
}
}

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Task Decomposition

Often an application can be decomposed into
tasks which can execute simultaneously.

Following the Directed Acyclic Graph (DAG)
shown on the right:

= Tasks Alice, Bob and Cy can start executing
simultaneously.

= Boss can only be executed after Alice and

Bob complete execution. a = alice();
b = bob();
= BigBoss can only be executed after Cy and z - 1:.’)0!5(;)5 (/D) ;
Boss complete execution. printf("$£\n", bigboss(s,c)) ;

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Parallel Execution of Tasks

#pragma omp parallel —
{
#pragma omp single —
{

#pragma omp task
a = alice();
#pragma omp task

b = bob() ;
#pragma omp task
c =cyl();

}
}
s = boss(a, b);
printf ("%$£f\n", bigboss(s,c));

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
R and e

Start parallel region, forking N threads

Use a single thread to generate the tasks

Each independent code section may be defined as a task

Once generated each task may be
performed by any available thread in the
parallel region.

Better Scheduling with Depend Clause

{
{
{

#fpragma omp parallel
#fpragma omp single

#pragma omp taskgroup

#pragma omp task depend(out:a)
a = alice();
#pragma omp task depend (out:b)

b = bob();
#pragma omp task depend(out:c)
c=cy();

#ipragma omp task depend(in:a,b) depend(out:s)
s = boss(a, b);

#ipragma omp task depend(in:s,c)

printf ("%£f\n", bigboss(s,c));

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

depend clause allows to specify
dependencies among tasks

depend (<in|out|inout>:<variables>)

Based on dependencies boss() can start
executing once alice() and bob() are done.

Using the depend clause it is possible to
execute cy and boss simultaneously

The taskgroup directive creates an
implicit synchronization point, but itis
optional in this example.

Parallelize Recursions

void merge sort openmp(int a[], int tmp[], int first, int last)
{
if (first < last) {
int middle = (first + last + 1) / 2;
if (last - first < 5000) {
merge sort(a, tmp, first, middle - 1);
merge sort(a, tmp, middle, last);
} else {
#pragma omp task
merge sort openmp(a, tmp, first, middle - 1);
#pragma omp task
merge sort openmp(a, tmp, middle, last);
#pragma omp taskwait
}
merge (a, tmp, first, middle, last);

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Merge sort is common recursive algorithm

* |ts recursive nature used to pose a
challenge in terms of expressing the
parallelism.

= OpenMP* Tasking helps express the
parallelism in recursive calls as shown
below.

= Explicit taskwait synchronization forces
a wait until all sibling tasks complete
execution.

»= Merging phase can't start until all the
tasks spawned above have completed.

Other Interesting Tasking Tidbits

Tasks can be stopped and continued (at scheduling points). By default tasks are
tied so they can only be continued by the same thread that started them (hot
cache). This behavior can be overridden with the untied clause

#pragma omp task untied
You may introduce your own scheduling points using the taskyield directive
#pragma omp taskyield

The taskloop directive may be used to schedule loop iterations as independent
tasks with a single generator (Intel® Compiler version 18+)

#pragma omp taskloop [[grainsize|numtask] [untied] [nogroups] [priority]]
for(i =0; 1i < N; i++){ ..}

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tasking Summary

Introduced to enable task-parallelism in shared memory architectures
Mostly used in irregular computing

Tasks are typically generated by a single thread

Dependencies can be specified to improve scheduling efficiency
Untied task generators can ensure progress

First-private is default data-sharing attribute

Shared variables remain shared

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VEGTORIZATION WITH OPENMP™ SIMD

OpenMP* SIMD

A few critical capabilities were introduced in OpenMP* with the standard
specification 4.0 (not an exhaustive list!)

——7Target-Constructs—Acceterator-support—
= SIMD:fine grained data level parallelism
= Affinity : Pinning workers to cores/HW threads
Refinements to SIMD were also introduced in specification 4.5
SIMD is of critical importance on Theta due to the 512bit width of the KNL processors

Affinity is also of critical importance with 256 threads per socket

Optimization Notice

Copyright © 2018, Intel Co i rights reserved.
*Other names and brands r ed as the property of others.

The OpenMP* SIMD directive

#pragma omp simd [clause]
for(int i = 0; i < N; i++)
{

}

!Somp simd [clause]
doi=1, N

end do

!Somp end simd

WARNING: The compiler
ignores dependencies when
using the simd directive.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Multiple clauses available
» safelen(length)

= simdlen(length)

= linear(list[:linear-step])

= aligned(list[:alignment])

= private(list)

= lastprivate(list)

= reduction(op: list)

= collapse(n)

Details and Limitations

Do/For-loop has to be in “canonical loop form” (see OpenMP 4.0 API:2.6)

safelen(n) :The compiler can assume a vectorization for a vector of length
of n to be safe

simdlen (n) : Preferred vector length

linear (var:step) : For every iteration of the original scalar loop var is
incremented by step. Therefore it will be incremented by step * vector_length

for the vectorized loop.

aligned (var:base): Assert that var is aligned to base bytes; (default is
architecture specific alignment)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SIMD Example

This example instructs the compiler to ignore data dependencies, asserts array
alignment, and indirectly mitigates the control flow dependence.

OpenMP* SIMD must be enabled at compilation time with either -qopenmp
or -qgopenmp-simd flags

#pragma omp simd safelen(32) aligned(a:64, b:64)
for(int 1 = 0; i < N; i++)
{

a[i] = (a[i] > 1.0) ? a[i]l*b[i] : a[i+off]*b[i];
}

Optimization Notice

Copyright © 2018, Intel Co i rights reserved.
*Other names and brands ed as the property of others.

SIMD Enabled Functions

Applying the declare simd construct to a
function creates one or more versions of
the function that can process multiple
arguments using SIMD instructions from a
single invocation from a SIMD loop.

#pragma omp declare simd [clause]
double work (double *a,double *b,int off);

function work(a,b,off)

!Somp omp declare simd [clause]
implicit none

integer :: off

double precision :: a(*), b(¥*)

end function

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
and brands may be claimed as the property of others.

Multiple clause options

simdlen(length)
linear(list[:linear-step])
aligned(list[:alignment])
uniform(list)

inbranch

notinbranch

SIMD Enabled Function Example

#pragma omp declare simd simdlen(16) notinbranch uniform(a, b, off)
double work(double *a, double *b, int i, int off)
{
return (a[i] > 1.0) ? a[i]l*b[i] : a[i + off]*b[i];
}

void vec2(double *a, double *b, int off, int len)
{
#pragma omp simd safelen(64) aligned(a:64, b:64)
for(int i = 0; i < len; i++)
{
a[i] = work(a, b, i, off);

}

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SIMD + Threads

By combining syntax we can both parallelize and vectorize a loop:
#pragma omp parallel for simd [clause]
!Somp parallel do simd [clause]

Where the clauses are those valid for either a do/for directive or a simd
directive.

Loop will distributed among threads using chunks that are multiples of the
vector size

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SIMD on Theta

Ensure safelen and simdlen are compatible with AVX512

= Minimum of 8 for double precision

= Minimum of 16 for single precision

Use the processor clause

= Extension introduced in Intel Compiler version 17

= Use processor(mic_avx512) to target KNL

Remember not all vector operations are equally effective

= Alignment (array + accesses)

» Strided access (gather/scatter operations reduce performance)

» Masking (enables conditional execution, but at a cost)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AFFINITY CONTROL WITH OPENMP™

Thread Affinity in OpenMP*

OpenMP* 4.0 introduces the concept of Places and Policies
= Set of threads running on one or more processors

= Places can be defined by the user

» Predefined places available: threads, cores, sockets

» Predefined policies : spread, close, master

And means to control these settings
= Environment variables OMP_PLACES and OMP_PROC_BIND
» Clause proc_bind for parallel regions

Optimal settings depend on application and workload

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pure OpenMP* on Theta

For pure OpenMP* based codes the most effective way to set affinity is to
disable affinity in aprun and then use OpenMP settings to bind threads.

Disabling affinity with aprun is simple:
$ aprun -n 1 -N 1 -cc none ./exe

Now threads can be pinned to specific hardware resources using the
OMP_PLACES and OMP_PROC_BIND environmental variables.

Rich set of options with lots of flexibility and configuration granularity, but a few
simple setups cover the vast majority of production cases.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pinning Step 1: OMP_PLACES

Two levels of granularity. You may specify a policy:
OMP_ PLACES=<policy>
Where policy may be

» sockets : threads are allowed to float on sockets (multiple cores)
= cores :threads are allowed to float on cores (multiple logical processors)
= threads : threads are bound to specific logical processors

Or you may specify a list:

OMP PLACES={lower bound:length:stride}:repeat:increment

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Pinning Step 2: OMP_PROC_BIND

To specify how threads are bound within the defined places use:
OMP_PROC_ BIND=<policy>
Where policy must be chosen from:
» close :threads paced consecutively, as near to the master place as possible
= spread : threads spread equally on hardware to use most resources
= master: threads placed on master place to enhance locality

Note that specifying master could lead to heavy oversubscription of hardware
resources, depending on the defined places.

It is possible to print out your pining specification as interpreted by OpenMP* using
OMP_ DISPLAY ENV=true

Optimization Notice

Copyright © 2018, Intel C

*Other names and brands

Some examples

OMP NUM THREADS=4; OMP PLACES=“{0:4:2}"
Bound to [0] [2] [4] [6]
OMP NUM THREADS=4; OMP_ PLACES=threads; OMP_PROC_BIND=close

Bound to [0] [64] [128] [192]

OMP_ NUM THREADS=4; OMP PLACES=threads; OMP_PROC_ BIND=spread

Bound to [0] [16] [32] [48]

OMP_NUM THREADS=4; OMP PLACES=cores; OMP_ PROC BIND=spread

Bound to [0,64,128,192] [16, 80, 144, 208] [32, 96, 160, 224] [48, 112, 176, 240]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hybrid MPI + OpenMP*

When using hybrid applications aprun must be configured to create pinning ranges
for each MPI task, and then OpenMP variables may be set to control thread pinning
within each rank processor range. Example: 4 MPI tasks, 16, 8 nodes

export OMP NUM THREADS=16

export OMP PLACES=cores;

export OMP PROC BIND=spread

aprun -n 32 -N 4 -cc depth -d 64 -j 4 ./exe

- Thread O Thread 1 _ Thread 15

E O [0, 64,128, 192] [1, 65, 129, 193] [15, 79, 143, 207]
Task 1 [16, 80, 144,208] [17,81,145,209] .. [31, 95, 159, 223]
e [32,96,160,224] [33,97,161,225] .. [47,111, 175, 239]

Task3 [48,112,176,240] [49,113,177,241] .. [63, 127, 191, 255]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
and e

NUMA considerations

Locality
= Local memory accesses reduce latency.

= Use Linux first touch policy to your advantage by initializing data in an OpenMP* loop in the
same way that it will be used later.

MCDRAM

= Provides higher bandwidth

* |mportant to make a conscious choice if running on flat mode

If running on flat mode you may use numactl to attach to the numa node 1 (MCDRAM) :

aprun -n <ntot> -N <ppn> numactl --membind=1 ./exe
aprun -n <ntot> -N <ppn> numactl --preferred=1l ./exe

Optimization Notice

Copyright 018, Intel Corporation. All rights reserved.
*Other nar and brands may be claimed as the property of others.

Recommended settings for Theta

The following setup is recommended for jobs using up to 4 threads per core

OMP_PLACES=cores
OMP_PROC_ BIND=spread

aprun -n <totalTasks> -N <tasksPerNode> -cc depth -d 256/<tasksPerNode> -j 4

If using multiple threads per core you may want to test the effect of chanign
gthe default wait policy to passive:

OMP WAIT POLICY=passive

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Software

